A CONNECTION BETWEEN PAIRS OF RECTANGLES AND SPHENIC NUMBERS

${ }^{1}$ S.Vidhyalakshmi, ${ }^{2}$ M.A.Gopalan, ${ }^{3 *}$ S. Aarthy Thangam
${ }^{1,2}$ Professor, ${ }^{3 *}$ Research Scholar
${ }^{1,2}$ Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India.
$3^{3 *}$ Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India.

Abstract : This paper aims at determining pairs of rectangles such that, in each pair, the sum of their areas is represented by a Sphenic number. Also, the number of primitive and non-primitive rectangles for each sphenic number is given.

IndexTerms - Pairs of rectangles, Area, Sphenic number.

I. Introduction

Any sequence of numbers represented by a mathematical function may be considered as pattern. In fact, mathematics can be considered as a characterization of patterns. For clear understanding, any regularity that can be illustrated by a scientific theory is a pattern. In other words, a pattern is a group of numbers, shapes or objects that follow a rule. A careful observer of patterns may note that there is a one to one correspondence between the polygonal numbers and the number of sides of the polygon. Apart from the above patterns we have some more fascinating patterns of numbers namely Nasty number, Dhuruva numbers and Jarasandha numbers. For illustrations, one may refer [1-21].

II. DEFINITION

Sphenic Number:

A Sphenic number is a positive integer which is the product of exactly 3 distinct primes.

III. Method of Analysis

Let $R_{1}(x, y)$ and $R_{2}(z, w)$ be two distinct rectangles whose corresponding areas are A_{1}, A_{2}.
Consider

$$
A_{1}+A_{2}=30, \text { a sphenic number }
$$

That is,

$$
\begin{equation*}
x y+z w=30 \tag{1}
\end{equation*}
$$

Let $\mathrm{q}, \mathrm{r}, \mathrm{s}$ be three non-zero distinct positive integers and $r>s$.
Introduction of the linear transformations

$$
\begin{equation*}
x=s, y=2 q+s, z=r-s, w=r+s \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
r^{2}=30-2 q s \tag{3}
\end{equation*}
$$

Solving (3) for q, r, s and using (2), the corresponding values of rectangles R_{1} and R_{2} are obtained and presented in Table:1 below:

Table: 1 Rectangles

R_{1}	R_{2}	$A_{1}+A_{2}$	Observations	
			Primitive	Non-Primitive
$(1,15)$	$(3,5)$	30	R_{1}, R_{2}	
$(1,27)$	$(1,3)$	30	R_{1}, R_{2}	

Note that the above two pairs of rectangles are primitives as $\operatorname{gcd}(x, y)=1$ and $\operatorname{gcd}(z, w)=1$
Some other numerical examples of sphenic numbers are presented in Table: 2 below:

Table: 2 Rectangles

R_{1}	R_{2}	$A_{1}+A_{2}$	Observations		Remarks
			Primitive	Non-Primitive	
$(1,7)$	$(5,7)$	42	R_{1}, R_{2}		```Total number of Primitive rectangles =7 Total number of non-Primitive rectangles =1```
$(3,5)$	$(3,9)$		R_{1}	R_{2}	
$(1,27)$	$(3,5)$		R_{1}, R_{2}		
$(1,39)$	$(1,3)$		R_{1}, R_{2}		
$(1,31)$	$(5,7)$	66	R_{1}, R_{2}		```Total number of Primitive rectangles =9 Total number of non-Primitive rectangles =1```
$(3,13)$	$(3,9)$		R_{1}	R_{2}	
$(5,11)$	$(1,11)$		R_{1}, R_{2}		
$(1,51)$	$(3,5)$		R_{1}, R_{2}		
$(1,63)$	$(1,3)$		R_{1}, R_{2}		
$(1,7)$	$(7,9)$	70	R_{1}, R_{2}		Total number of Primitive rectangles $=11$ Total number of non-Primitive rectangles $=1$
$(3,5)$	$(5,11)$		R_{1}, R_{2}		
$(1,35)$	$(5,7)$		R_{1}, R_{2}		
$(1,55)$	$(3,5)$		R_{1}, R_{2}		
$(1,67)$	$(1,3)$		R_{1}, R_{2}		
$(3,21)$	$(1,7)$		R_{2}	R_{1}	
$(1,15)$	$(7,9)$	-78	R_{1}, R_{2}		```Total number of Primitive rectangles =9 Total number of non-Primitive rectangles =1```
$(1,43)$	$(5,7)$		R_{1}, R_{2}	-	
$(3,17)$	$(3,9)$		R_{1}	R_{2}	
$(1,63)$	$(3,5)$		R_{1}, R_{2}		
$(1,75)$	$(1,3)$		R_{1}, R_{2}		
$(1,39)$	$(7,9)$	102	R_{1}, R_{2}		```Total number of Primitive rectangles =9 Total number of non-Primitive rectangles =1```
$(1,67)$	$(5,7)$		R_{1}, R_{2}		
$(3,25)$	$(3,9)$		R_{1}	R_{2}	
$(1,87)$	$(3,5)$		R_{1}, R_{2}		
$(1,99)$	$(1,3)$		R_{1}, R_{2}		
$(1,25)$	$(8,10)$	105	R_{1}	R_{2}	```Total number of Primitive rectangles =12 Total number of non-Primitive rectangles =14```
$(2,14)$	$(7,11)$		R_{2}	R_{1}	
$(6,10)$	$(3,15)$			R_{1}, R_{2}	
$(3,11)$	$(6,12)$		R_{1}	R_{2}	

IV. CONCLUSION

In this paper, an attempt has been made to obtain pairs of rectangles such that, in each pair, the sum of their areas is represented by a Sphenic number. The readers of this paper may search for pairs of rectangles other than the pairs of rectangles presented above for each sphenic number.

References

[1] Carmichael. R.D, 1959, The Theory of numbers and Diophantine Analysis, Dover Publication, New York.
[2] Mordell. L.J, 1969, Diophantine Equations, Academic Press, London.
[3] Bert Miller, 1980, Nasty numbers, The Mathematics Teacher, No.9, Vol.73, 649.
[4] Charles Boum. K, 1981, Nasties are primitives, The Mathematics Teacher, No.9, Vol.74, 502-504.
[5] John. H, Conway and Richard K. Guy, 1995, the Book of Numbers, Springer Verlag, New York.
[6] Kapoor. J.N, 1997, Dhuruva numbers, Fascinating world of Mathematics and mathematical Sciences, Trust Society, Vol.17,.
[7] Dickson L.E, 2005, History of the theory of Numbers, Vol II, Diophantine Analysis, Dover, New York.
[8] Sastry, P.S.N, Jarasandha numbers, The Mathematics Teacher, No.9, Vol.37, issue 3 and 4, 2004.
[9] Gopalan. M.A, Janaki. G, 2008. Pythagorean triangle with Nasty number as a leg, Journal of Applied Mathematical Analysis and Applications, Vol.4, No.1-2, 13-17.
[10] Gopalan. M.A, Devibala. S, 2008, Pythagorean triangle with triangular number as a leg, Impact J.Sci.Tech, 2(4): 195199.
[11] Gopalan. M.A, Sangeetha. V and Manju Somanath, 2013, Pythagorean triangle and Polygonal numbers, Cayley J. Math, 2 (2): 151-156.
[12] Dr. Mita Darbari, 2014, A connection between Hardy-Ramanujan number and Special Pythagorean triangle, Bulletin of Society for Mathematical Services and Standards, 3(2): 71-73.
[13] Gopalan. M.A., Vidhyalakshmi. S., Thiruniraiselvi, N. and Presenna. R, 2014, Special Pythagorean triangles and kepricker number, International Journal of Engineering Research-Online, 3(1): 14-17.
[14] Gopalan. M.A, Vidhyalakshmi. S, Premalatha. E and Presenna. R, 2014, Special Pythagorean triangles and 6-digit Dhuruva numbers, International Journal of applied engineering research, 9(24): 30637-30642.
[15] Gopalan. M.A., Vidhyalakshmi. S, Premalatha. E and Presenna. R, 2014, Special Pythagorean triangles and 5-digit Dhuruva numbers, IRJMEIT, 1(4): 29-33.
[16] Gopalan. M.A., Vidhyalakshmi. S, Premalatha. E and Presenna. R, 2015, Special Pairs of Pythagorean triangles and Dhuruva number, Global Journal of Science Frontier Research: F, 15(1): 33-37
[17] Gopalan. M.A, Vidhyalakshmi. S, Thiruniraiselvi. N and Presenna. R, 2015, Special Pythagorean triangles and 5-digit dhuruva numbers, Global Journal of Pure and Applied Mathematics, 11(1): 463-468.
[18] Gopalan. M.A., Vidhyalakshmi. S, Thiruniraiselvi. N. and Presenna. R, 2015, Special Pythagorean triangles and 6-digit dhuruva number, International Journal of Mathematics And its Applications, 3(2): 149-154.
[19] Gopalan. M.A, Vidhyalakshmi. S, Thiruniraiselvi. N. and Presenna. R, 2015, Special pairs of pythagorean triangles and dhuruva numbers of orders 4,5 and 6, International Journal of Research in Engineering and Technology, 4(01): 1-7.
[20] Gopalan. M.A, Vidhyalakshmi. S, Premalatha. E and Presenna. R, 2015, Special Pythagorean triangles and 3-digit Dhuruva numbers, Global Journal of Pure and Applied Mathematics, 11 (3): 1641-1646.
[21] Gopalan. M.A, Vidhyalakshmi. S and Premalatha. E, 2016, A connections between rectangle and Jarasandha numbers with digits 2, 4, 5 and 6, American Journal of Research in Science, Technology, Engineering and Mathematics, 14(1): 35-37.

