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Abstract : This paper aims at determining pairs of rectangles such that, in each pair, the sum of their areas is represented by a 

Sphenic number. Also, the number of primitive and non-primitive rectangles for each sphenic number is given. 
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I. INTRODUCTION 

Any sequence of numbers represented by a mathematical function may be considered as pattern. In fact, mathematics can 

be considered as a characterization of patterns. For clear understanding, any regularity that can be illustrated by a scientific theory 

is a pattern. In other words, a pattern is a group of numbers, shapes or objects that follow a rule. A careful observer of patterns may 

note that there is a one to one correspondence between the polygonal numbers and the number of sides of the polygon. Apart from 

the above patterns we have some more fascinating patterns of numbers namely Nasty number, Dhuruva numbers and Jarasandha 

numbers. For illustrations, one may refer [1- 21]. 

 

II. DEFINITION 

Sphenic Number: 

A Sphenic number is a positive integer which is the product of exactly 3 distinct primes. 

 

III. METHOD OF ANALYSIS 

 

Let  yxR ,1 and  wzR ,2 be two distinct rectangles whose corresponding areas are 21 , AA . 

Consider 

3021  AA , a sphenic number 

That is, 

30 zwxy              (1) 

Let q, r, s be three non-zero distinct positive integers and sr  . 

Introduction of the linear transformations 

 srwsrzsqysx  ,,2,          (2) 

in (1) leads to  

 qsr 2302              (3) 

Solving (3) for srq ,, and using (2), the corresponding values of rectangles 1R  and 2R are obtained and presented in Table:1 

below: 

 

Table: 1 Rectangles 

1R  2R  21 AA   Observations 

Primitive Non-Primitive 

(1, 15) (3, 5) 30 
21 , RR   

(1, 27) (1, 3) 30 
21 , RR   

 

Note that the above two pairs of rectangles are primitives as   1,gcd yx and   1,gcd wz  

Some other numerical examples of sphenic numbers are presented in Table: 2 below: 
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Table: 2 Rectangles 

1R  2R  21 AA   Observations Remarks 

Primitive Non-Primitive 

(1, 7) (5, 7) 42 

 
21 , RR   Total number of Primitive 

rectangles =7 

Total number of non-Primitive 

rectangles =1  

(3, 5) (3, 9) 
1R  2R  

(1, 27) (3, 5) 
21 , RR   

(1, 39) (1, 3) 
21 , RR   

(1, 31) (5, 7) 66 
21 , RR   Total number of Primitive 

rectangles =9 

Total number of non-Primitive 

rectangles =1 
(3, 13) (3, 9) 

1R  2R  

(5, 11) (1, 11) 
21 , RR   

(1, 51) (3, 5) 
21 , RR   

(1, 63) (1, 3) 
21 , RR   

(1, 7) (7, 9) 70 
21 , RR   Total number of Primitive 

rectangles =11 

Total number of non-Primitive 

rectangles =1 
(3, 5) (5, 11) 

21 , RR   

(1, 35) (5, 7) 
21 , RR   

(1, 55) (3, 5) 
21 , RR   

(1, 67) (1, 3) 
21 , RR   

(3, 21) (1, 7) 
2R  1R  

 (1, 15) (7, 9) 78 
21 , RR   Total number of Primitive 

rectangles =9 

Total number of non-Primitive 

rectangles =1 
(1, 43) (5, 7) 

21 , RR   

(3, 17) (3, 9) 
1R  2R  

(1, 63) (3, 5) 
21 , RR   

(1, 75) (1, 3) 
21 , RR   

(1, 39) (7, 9) 102 
21 , RR   Total number of Primitive 

rectangles =9 

Total number of non-Primitive 

rectangles =1 
(1,67) (5, 7) 

21 , RR   

(3, 25) (3, 9) 
1R  2R  

(1, 87) (3, 5) 
21 , RR   

(1, 99) (1, 3) 
21 , RR   

(1, 25) (8, 10) 105 

 

 

1R  2R  Total number of Primitive 

rectangles =12 

Total number of non-Primitive 

rectangles =14 
(2, 14) (7, 11) 

2R  1R  

(6, 10) (3, 15)  
21 , RR  

(3, 11) (6, 12) 
1R  2R  
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(4, 10 ) (5, 13) 
2R  1R  

(1, 57) (6, 8) 
1R  2R  

(2, 30) (5, 9) 
2R  1R  

(4, 18) (3, 11) 
2R  1R  

(1, 81) (4, 6) 
1R  2R  

(2, 42) (3, 7) 
2R  1R  

(4, 24) (1, 9) 
2R  1R  

(1, 97) (2,4) 
1R  2R  

(2, 50) (1,5) 
2R  1R  

(1, 11) (9, 11) 110 
21 , RR   Total number of Primitive 

rectangles =11 

Total number of non-Primitive 

rectangles =1 
(5, 7) (5, 15) 

1R  2R  

(1, 47) (7, 9) 
21 , RR   

(1, 75) (5, 7) 
21 , RR   

(1, 95) (3, 5) 
21 , RR   

(1, 107) (1, 3) 
21 , RR   

(1, 15) (9, 11) 114 
21 , RR   Total number of Primitive 

rectangles =13 

Total number of non-Primitive 

rectangles =1 
(7, 9) (3, 17) 

21 , RR   

(1, 51) (7, 9) 
21 , RR   

(1, 79) (5, 7) 
21 , RR   

(3, 29) (3, 9) 
1R  2R  

(1, 99) (3, 5) 
21 , RR   

(1, 111) (1, 3) 
21 , RR   

(1, 39) (9, 11) 138 
21 , RR   Total number of Primitive 

rectangles =11 

Total number of non-Primitive 

rectangles =1 
(1, 75) (7, 9) 

21 , RR   

(1, 103) (5, 7) 
21 , RR   

(3, 37) (3, 9) 
1R  2R  

(1, 123) (3, 5) 
21 , RR   

(1, 135) (1, 3) 
21 , RR   

(1, 45) (10, 12) 165 
1R  2R  Total number of Primitive 

rectangles =12 

Total number of non-Primitive 

rectangles =14 
(2, 24) (9, 13) 

2R  1R  

(1, 85) (8, 10) 
1R  2R  
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(2, 44) (7, 11) 
2R  1R  

(7, 19) (2, 16) 
1R  2R  

(6, 20) (3, 15)  
21 , RR  

(3, 31) (6, 12) 
1R  2R  

(1, 117) (6, 8) 
1R  2R  

(2, 60) (5, 9) 
2R  1R  

(1, 141) (4, 6) 
1R  2R  

(2, 72) (3, 7) 
2R  1R  

(1, 157) (2, 4) 
1R  2R  

(2, 80) (1, 5) 
2R  1R  

(1, 31) (11, 13) 174 
21 , RR   Total number of Primitive 

rectangles =18 

Total number of non-Primitive 

rectangles =2 
(3, 13) (9, 15) 

1R  2R  

(5, 11) (7, 17) 
21 , RR   

(1, 75) (9, 11) 
21 , RR   

(1, 111) (7, 9) 
21 , RR   

(5, 27) (3, 13) 
21 , RR   

(1, 139) (5, 7) 
21 , RR   

(3, 49) (3, 9) 
1R  2R  

(1, 159) (3, 5) 
21 , RR   

(1, 171) (1,3) 
21 , RR   

(1, 43) (11, 13) 186 
21 , RR   Total number of Primitive 

rectangles =17 

Total number of non-Primitive 

rectangles =3 
(3, 17) (9, 15) 

1R  2R  

(7, 13) (5, 19) 
21 , RR   

(1, 87) (9, 11) 
21 , RR   

(1, 123) (7, 9) 
21 , RR   

(1, 151) (5, 7) 
21 , RR   

(5, 35) (1, 11) 
2R  1R  

(3, 53) (3, 9) 
1R  2R  

(1, 171) (3, 5) 
21 , RR   

(1, 183) (1, 3) 
21 , RR   
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IV. CONCLUSION 

In this paper, an attempt has been made to obtain pairs of rectangles such that, in each pair, the sum of their areas is 

represented by a Sphenic number. The readers of this paper may search for pairs of rectangles other than the pairs of rectangles 

presented above for each sphenic number. 
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